Files
ptb/gpsd.go
2025-02-21 14:25:36 +01:00

400 lines
12 KiB
Go

package main
import (
"bufio"
"encoding/json"
"errors"
"fmt"
"github.com/adrianmo/go-nmea"
"io"
"net"
"strconv"
"strings"
"sync"
"syscall"
"time"
)
/*
gpsd.go
A minimal gpsd like daemon which reads NMEA sentences and forms gpsd compatible records which are distributed
to TCP listeners, in particular to Pat.
Please note: this code does the bare minimum to supply a position received by a NMEA capable GNSS receiver
to Pat. It's main purpose it to avoid the need to run a separate gpsd for this particular purpose,
but it is ** by far ** no full-featured replacement for gpsd.
Torsten Harenberg, DL1THM. Feb 2025.
*/
var currentTPV TPV
var (
clients = make(map[net.Conn]struct{})
clientMutex sync.Mutex
)
type WatchMessage struct {
Class string `json:"class"`
Enable bool `json:"enable"`
JSON bool `json:"json"`
Nmea bool `json:"nmea"`
RAW int `json:"raw"`
Scaled bool `json:"scaled"`
Timing bool `json:"timing"`
Split24 bool `json:"split_24"`
PPS bool `json:"pps"`
}
// TPV repräsentiert ein GPSd TPV (Time-Position-Velocity) JSON-Objekt.
type TPV struct {
Class string `json:"class"` // immer "TPV"
Device string `json:"device,omitempty"` // z.B. "/dev/ttyS0"
Time string `json:"time,omitempty"` // Zeitangabe im RFC3339-Format
Lat float64 `json:"lat,omitempty"` // Breitengrad
Lon float64 `json:"lon,omitempty"` // Längengrad
Alt float64 `json:"alt,omitempty"` // Höhe (Meter)
Speed float64 `json:"speed"` // Geschwindigkeit (m/s)
Track float64 `json:"track,omitempty"` // Kurs (Grad)
Mode int `json:"mode,omitempty"` // Fix-Fodus aus GSA: 1 = kein Fix, 2 = 2D, 3 = 3D
PDOP float64 `json:"pdop,omitempty"` // Positions-DOP
HDOP float64 `json:"hdop,omitempty"` // Horizontaler DOP
VDOP float64 `json:"vdop,omitempty"` // Vertikaler DOP
}
// SKY repräsentiert ein GPSd SKY JSON-Objekt, das Satellitendaten enthält.
type SKY struct {
Class string `json:"class"` // immer "SKY"
Device string `json:"device,omitempty"` // z.B. "/dev/ttyS0"
Satellites []SatelliteInfo `json:"satellites,omitempty"`
}
// SatelliteInfo fasst Informationen zu einem einzelnen Satelliten zusammen.
type SatelliteInfo struct {
PRN int `json:"PRN"` // PRN/ID des Satelliten
Elevation int `json:"elevation"` // Höhe (Grad)
Azimuth int `json:"azimuth"` // Azimut (Grad)
SNR int `json:"ss"` // Signalstärke (in dB)
}
// ParseWatchMessage extrahiert und parst die ?WATCH Nachricht
func ParseWatchMessage(input string) (*WatchMessage, error) {
prefix := "?WATCH="
if !strings.HasPrefix(input, prefix) {
return nil, fmt.Errorf("ungültiges Format: muss mit %q beginnen", prefix)
}
jsonPart := input[len(prefix):]
var msg WatchMessage
if err := json.Unmarshal([]byte(jsonPart), &msg); err != nil {
return nil, fmt.Errorf("Fehler beim Parsen des JSON: %w", err)
}
return &msg, nil
}
func startGPSdTCPServer(gpsdaddress string) error {
listener, err := net.Listen("tcp", gpsdaddress)
if err != nil {
writeDebug(fmt.Sprintf("Error starting TCP server: %v\n", err), 0)
return err
}
defer listener.Close()
writeDebug(fmt.Sprintf("TCP server started on port %s", gpsdaddress), 1)
for {
client, err := listener.Accept()
if err != nil {
writeDebug(fmt.Sprintf("Error accepting client connection: %v\n", err), 0)
continue
}
writeDebug(fmt.Sprintf("New GPSd client connected: %v", client.RemoteAddr()), 0)
addClient(client)
}
}
// isNetConnClosedErr classifies errors to determine if the net.Conn is closed. From https://stackoverflow.com/questions/44974984/how-to-check-a-net-conn-is-closed
func isNetConnClosedErr(err error) bool {
switch {
case
errors.Is(err, net.ErrClosed),
errors.Is(err, io.EOF),
errors.Is(err, syscall.EPIPE):
return true
default:
return false
}
}
func addClient(client net.Conn) {
if s.NMEAPassthrough {
go func() {
defer func() {
client.Close()
removeClient(client)
writeDebug(fmt.Sprintf("GPSd Client disconnected: %v\n", client.RemoteAddr()), 0)
}()
rd := bufio.NewScanner(client)
for rd.Scan() {
writeDebug(fmt.Sprintf("GPSd Client received message: %v\n", rd.Text()), 0)
}
}()
} else {
_, err := client.Write([]byte("{\"class\":\"VERSION\",\"release\":\"3.25\",\"rev\":\"3.25\",\"proto_major\":3,\"proto_minor\":15}\n"))
if err != nil {
writeDebug(fmt.Sprintf("Error writing to client: %v\n", err), 1)
}
go func() {
defer func() {
client.Close()
removeClient(client)
writeDebug(fmt.Sprintf("GPSd Client disconnected: %v\n", client.RemoteAddr()), 0)
}()
writeDebug(fmt.Sprintf("gpsd: starting conversation with %v\n", client.RemoteAddr()), 0)
rd := bufio.NewReader(client)
for {
time.Sleep(100 * time.Millisecond)
// looks like gpsd does not expect \n terminated lines so read what is there from the socket
client.SetReadDeadline(time.Now().Add(100 * time.Millisecond))
buff := make([]byte, 1024)
n, err := rd.Read(buff)
if isNetConnClosedErr(err) {
// socket closed, end the goroutine
break
}
if err != nil {
writeDebug(fmt.Sprintf("gpsd: error reading from client: %v\n", err), 0)
continue
}
line := string(buff[:n])
writeDebug(fmt.Sprintf("gpsd: Received from client: %v\n", string(line)), 1)
msg, err := ParseWatchMessage(string(line))
if err == nil {
// fill devices list
dl := fmt.Sprintf("{\"class\":\"DEVICES\",\"devices\":[{\"class\":\"DEVICE\",\"path\":\"%s\",\"driver\":\"NMEA0183\",\"activated\":\"2025-02-12T14:34:56.027Z\",\"flags\":1,\"native\":0,\"bps\":115200,\"parity\":\"N\",\"stopbits\":1,\"cycle\":1.00}]}\n", currentTPV.Device)
_, err = client.Write([]byte(dl))
writeDebug(dl, 0)
//reply to WATCH command
resp := WatchMessage{Class: "WATCH", Enable: msg.Enable, JSON: true}
jsonresp, err := json.Marshal(resp)
if err != nil {
fmt.Println("Fehler:", err)
}
jsonresp = append(jsonresp, byte('\n'))
_, err = client.Write(jsonresp)
writeDebug(fmt.Sprintf("gpsd: answer to client: %s\n", jsonresp), 1)
if err != nil {
writeDebug(fmt.Sprintf("gpsd: error writing to client: %v\n", err), 0)
}
//current TPV
jsonOut, err := json.Marshal(currentTPV)
jsonOut = append(jsonOut, byte('\n'))
if err != nil {
writeDebug(fmt.Sprintf("gpsd: error serializing TPV object: %v", err), 0)
return
}
_, err = client.Write(jsonOut)
if err != nil {
writeDebug(fmt.Sprintf("gpsd: error writing to client: %v\n", err), 0)
}
writeDebug(fmt.Sprintf("gpsd: answer to client: %s\n", string(jsonOut)), 1)
}
}
}()
}
// register the client, so it gets updates from now on
clientMutex.Lock()
clients[client] = struct{}{}
clientMutex.Unlock()
}
func removeClient(client net.Conn) {
clientMutex.Lock()
delete(clients, client)
clientMutex.Unlock()
}
// publishTPV serialisiert den aktuellen TPV-Zustand als JSON und gibt ihn aus.
func publishTPV() {
jsonOut, err := json.Marshal(currentTPV)
if err != nil {
writeDebug(fmt.Sprintf("error serializing TPV object: %v", err), 0)
return
}
broadcastToClients(string(jsonOut))
}
func readAndBroadcast() {
device := s.DeviceType
if s.NMEAPassthrough {
for {
nmeaSentence, err := s.GPSStream.DequeueOrWait()
if err != nil {
writeDebug(fmt.Sprintf("Error dequeuing GPS sentence: %v\n", err), 0)
continue
}
broadcastToClients(nmeaSentence)
}
} else {
for {
nmeaSentence, err := s.GPSStream.DequeueOrWait()
if err != nil {
writeDebug(fmt.Sprintf("Error dequeuing GPS sentence: %v\n", err), 0)
continue
}
writeDebug(fmt.Sprintf("gpsd: received NMEA: %s", nmeaSentence), 1)
//broadcastToClients(string(nmeaSentence) + "\n")
// NMEA-Satz parsen
sentence, err := nmea.Parse(nmeaSentence)
if err != nil {
writeDebug(fmt.Sprintf("gpsd: error parsing NMEA sentence '%s': %v", nmeaSentence, err), 1)
continue
}
switch s := sentence.(type) {
// RMC (Mindestdaten: Zeit, Position, Kurs, Geschwindigkeit)
case nmea.RMC:
updateTPVFromRMC(s, device)
// GGA (Positions- und Höheninformation)
case nmea.GGA:
updateTPVFromGGA(s, device)
// VTG: Aktualisierung von Kurs und Geschwindigkeit.
case nmea.VTG:
updateTPVFromVTG(s)
// GSV (Satelliten in Sicht)
case nmea.GSV:
sats := make([]SatelliteInfo, 0, len(s.Info))
for _, sat := range s.Info {
sats = append(sats, SatelliteInfo{
PRN: int(sat.SVPRNNumber),
Elevation: int(sat.Elevation),
Azimuth: int(sat.Azimuth),
SNR: int(sat.SNR),
})
}
sky := SKY{
Class: "SKY",
Device: device,
Satellites: sats,
}
if jsonOut, err := json.Marshal(sky); err == nil {
broadcastToClients(string(jsonOut))
//fmt.Println(string(jsonOut))
} else {
writeDebug(fmt.Sprintf("gpsd: error serializing SKY object: %v", err), 1)
}
// GSA (z.B. GPGSA oder auch ohne Talker-ID)
case nmea.GSA:
updateTPVFromGSA(s)
default:
writeDebug(fmt.Sprintf("unsupported NMEA type: %T", s), 1)
}
}
}
}
func parseTime(gpstime string) string {
// Remove any extra milliseconds after 3 digits (if needed)
gpstime = strings.Split(gpstime, ".")[0] + ".000"
now := time.Now()
parsedTime, err := time.Parse("15:04:05.000", gpstime)
if err != nil {
writeDebug(fmt.Sprintf("Error parsing time: %s", err.Error()), 1)
return now.Format(time.RFC3339)
}
// Combine today's date with the parsed time
finalTime := time.Date(
now.Year(), now.Month(), now.Day(),
parsedTime.Hour(), parsedTime.Minute(), parsedTime.Second(), parsedTime.Nanosecond(),
now.Location(),
)
// Format in RFC3339
rfc3339Time := finalTime.Format(time.RFC3339)
return rfc3339Time
}
func updateTPVFromRMC(s nmea.RMC, device string) {
const knotsToMs = 0.514444
currentTPV.Class = "TPV"
currentTPV.Device = device
currentTPV.Time = parseTime(s.Time.String())
currentTPV.Lat = float64(s.Latitude)
currentTPV.Lon = float64(s.Longitude)
currentTPV.Speed = float64(s.Speed * knotsToMs)
currentTPV.Track = float64(s.Course)
// Now publish currentTPV to gpsd
publishTPV()
}
func updateTPVFromGGA(s nmea.GGA, device string) {
currentTPV.Class = "TPV"
currentTPV.Device = device
currentTPV.Time = parseTime(s.Time.String())
currentTPV.Lat = float64(s.Latitude)
currentTPV.Lon = float64(s.Longitude)
currentTPV.Alt = float64(s.Altitude)
// Publish currentTPV to gpsd
publishTPV()
}
func updateTPVFromGSA(s nmea.GSA) {
// Update only the fields provided by GSA
fixtype, _ := strconv.Atoi(s.FixType)
currentTPV.Mode = fixtype
currentTPV.PDOP = float64(s.PDOP)
currentTPV.HDOP = float64(s.HDOP)
currentTPV.VDOP = float64(s.VDOP)
// Publish currentTPV to gpsd
publishTPV()
}
// updateTPVFromVTG aktualisiert den TPV-Zustand mit den in VTG verfügbaren Daten (Kurs und Geschwindigkeit).
func updateTPVFromVTG(s nmea.VTG) {
// Falls ein wahrer Kurs (TrackTrue) angegeben wurde, diesen übernehmen:
if s.TrueTrack != 0 {
currentTPV.Track = s.TrueTrack
}
// Geschwindigkeit: Wir rechnen die in Knoten angegebene Geschwindigkeit in m/s um.
if s.GroundSpeedKnots != 0 {
const knotsToMs = 0.514444
currentTPV.Speed = s.GroundSpeedKnots * knotsToMs
}
if s.GroundSpeedKPH != 0 {
const kphtoMs = 3.6
currentTPV.Speed = s.GroundSpeedKPH * kphtoMs
}
publishTPV()
}
func broadcastToClients(message string) {
clientMutex.Lock()
defer clientMutex.Unlock()
for client := range clients {
_, err := client.Write([]byte(message + "\n"))
if err != nil {
writeDebug(fmt.Sprintf("gpsd: error writing to client %v: %v\n", client.RemoteAddr(), err), 0)
client.Close()
delete(clients, client)
}
writeDebug(fmt.Sprintf("gpsd: message: %v", message), 1)
}
}